Bt (Bacillus thuringiensis) Studies
Genetic Contamination / Volunteers / Superweeds / Coexistence
Soil
Nutrient/Antinutrient/Non-equivalence
Feeding
Human
Secondary Pest Infestations
Target resistance
Non-target organisms
Need to Be Categorized
Genetic Contamination / Volunteers / Superweeds / Coexistence
Alvarez-Morales A (2002) Transgenes in maize landraces in Oaxaca: official report on the extent and implications. The 7th International Symposium on the Biosafety of Genetically Modified Organisms Beijing, China October 10-16 page 65 http://www.saveourseeds.org/downloads/proceedings_BEIJING_oct_2002.pdf
Bjørgaas, H. H. (2013). 14013-Case study from Santa Catarina, Brazil: GM contamination detected in maize variety. Cadernos de Agroecologia, 8(2). http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/view/14013
Cao, D., Stewart, C. N., Zheng, M., Guan, Z., Tang, Z. X., Wei, W., & Ma, K. P. (2014). Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea. Plant Science, 227, 45-50. http://www.sciencedirect.com/science/article/pii/S0168945214001526
George A. Dyer, J. Antonio Serratos-Hernández, Hugo R. Perales, Paul Gepts, Alma Piñeyro-Nelson, Angeles Chávez, Noé Salinas-Arreortua, Antonio Yúnez-Naude, J. Edward Taylor, and Elena R. Alvarez-Buylla (2009) Dispersal of Transgenes through Maize Seed Systems in Mexico. PLoS ONE 4(5): e5734. doi:10.1371/ journal.pone.0005734 http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0005734
Galeano, Pablo, Debat, Claudio Martínez, Ruibal, Fabiana, Fraguas, Laura Franco and Galván, Guillermo A. (2010) Cross-fertilization between genetically modified and non- genetically modified maize crops in Uruguay. Env Bio safety Res Vo l9(3):147-154
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8358104
Glaum, P., & Vandermeer, J. (2015). Potential for and consequences of naturalized Bt products: Qualitative dynamics from indirect intransitivities. Ecological Modelling, 299, 121-129. http://www.sciencedirect.com/science/article/pii/S0304380014006127
Halfhill, Matthew D., et al. “Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa.” Environmental Biosafety Research 1 (2002): 19-28.
Macilwain, C. (2005). News: Stray seeds had antibiotic-resistance genes. Nature 434: 548. http://www.nature.com/nature/journal/v434/n7033/full/434548a.html
Park, K.W., Lee, B., Kim, C.G., Kim, D.Y., Park, J.Y., Ko, E.M., Jeong, S.C., Choi, K.F., Yoon, W.K., Kim, H.M. (2010) Monitoring the occurrence of genetically modified maize at a grain receiving port and along trans- portation routes in the Republic of Korea. Food Control, 21(4): 456-461. http://www.sciencedirect.com/science/article/pii/S0956713509002217
Snow, A. A., Pilson, D., Riesberg, L. H., Paulsen, M. J., & Selbo, S. M. (2003). A BT transgene reduces herbivory and enhances fecundity in wild sunflower. BioScience, 13, 279-286. http://www.jstor.org/discover/10.2307/3099898?uid=3739256&uid=2129&uid=2&uid=70&uid=4&sid=21102568325651
Vacher C, Weis AE, Hermann D, Kossler T, Young C and Hochbert ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape(Brassica rapa). Theor Appl Genet 109(4): 806-14.
http://link.springer.com/article/10.1007/s00122-004-1696-7
Soil
Audiseshamma, K., Paramageetham, C., Theja, P. C., Hooda, V., & Babu, G. P. (2014). Influence of Transgenic Bt Crop Root Exudates on Rhizospheric Soil Microflora. Int. J. Curr. Microbiol. App. Sci, 3(5), 289-294. http://www.ijcmas.com/vol-3-5/K.Audiseshamma,%20et%20al.pdf
SUSANNE BAUMGARTE, CHRISTOPH C. TEBBE (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere Molecular Ecology Volume 14, Issue 8, pages 2539–2551, July
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2005.02592.x/abstract
Blackwood CB, Buyer JS. (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual. May-Jun;33(3):832-6. http://www.ncbi.nlm.nih.gov/pubmed/15224917*
D.Blaise andK R Kranthi (2011):Cry1Ac expression in transgenic Bt cotton hybrids is influenced by soil moisture and depth. Current Science, Vol101(6)
M. Castaldini, A. Turrini, C. Sbrana, A. Benedetti, M. Marchionni, S. Mocali, A. Fabiani, S. Landi, F. Santomassimo, B. Pietrangeli, M. P. Nuti, N. Miclaus, and M. Giovannetti (2005) Impact of Bt Corn on Rhizospheric and Soil Eubacterial Communities and on Beneficial Mycorrhizal Symbiosis in Experimental Microcosms Appl Environ Microbiol. November; 71(11): 6719–6729.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287690/
Tanya E. Cheeke, Todd N. Rosenstiel and Mitchell B. Cruzan (2012) Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize Am. J. Bot. April vol. 99 no.4 700-707 http://www.amjbot.org/content/99/4/700.full
Crecchio, C. & Stotzky, G. (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biol. Biochem. 30, 463-470. http://www.sciencedirect.com/science/article/pii/S0038071797001478
Dinel H, Schnitzer M, Saharinen M, Meloche F, Paré T, Dumontet S, Lemee L Ambles A (2003). Extractable soil lipids and microbial activity as affected by Bt and Non -Bt Maize grown on a silty clay loam soil. J. Environ. Sci. Health. 38: 211-219. http://www.ncbi.nlm.nih.gov/pubmed/12617558
Donegan, K.K., Palm, C.J., Fieland, V.J., Porteous, L.A., Ganio, L.M., Schaller, D.L., Bucao, L.Q. & Seidler, R.J. 1995. Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl. Soil Ecol. 2, 111-124. http://academic.research.microsoft.com/Publication/40701788/changes-in-levels-species-and-dna-fingerprints-of-soil-microorganisms-associated-with-cotton-expressing-the-bacillus-thuringiensis-var-kurstaki-endotoxin
Flores S, Saxena D and Stotzky G.(2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biology & Biochemistry 37:10731082. http://www.sciencedirect.com/science/article/pii/S0038071704004201
Griffiths B.S, Caul S, Thompson J, Birch A.N.E, Scrimgeour C, Andersen M.N, Cortet J, Messéan A, Sausse C, Lacroix B. & Krogh P.H.(2005) A comparison of soil microbial community structure ,protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin. Plant and Soil 275:135-146. http://link.springer.com/article/10.1007%2Fs11104-005-1093-2
Icoz I. & Stotzky G. (2008) Fate and effects of insect- resistant Bt crops in soil ecosystems. Soil Biology & Biochemistry 40:559-586. http://www.sciencedirect.com/science/article/pii/S0038071707004439
Icoz I, Andow D, Zwahlen C, Stotzky G (2009) Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture? Bull Environ Contam Toxicol 83:48–58 http://www.ncbi.nlm.nih.gov/pubmed/19444360
Jagadish C. Tarafdar, Indira Rathore and Vandana Shiva (2012): Effect of Bt-transgenic cotton on soil biological health. Applied Biological Research 14(1):15-23 http://www.indianjournals.com/ijor.aspx?target=ijor:abr&volume=14&issue=1&article=002
Liu W (2009) Effects of Bt transgenic crops on soil ecosystems : a review of a 10-year research in China. Front. Agric. China 3(2):190-98 http://link.springer.com/article/10.1007/s11703-009-0027-9
Wenke Liu (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology vol. 19, no. 2, pp. 229-238
Xiao-gang Li, Biao Liu, Sondre Heia, Dou-dou Liu, Zheng-min Han, Ke-xin Zhou, Jin-jie Cui, Jun-yu Luo, Yang-ping Zheng (2009) The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum Transgenic Research – TRANSGENIC RES , vol. 18, no. 5, pp. 757-767 http://link.springer.com/article/10.1007%2Fs11248-009-9264-1?LI=true
Li XG, Wei Q, Liu B, Alam MS, Wang XX, Shen W, Han ZM. (2013) Root exudates of transgenic cotton and their effects on Fusarium oxysporum. Front Biosci (Landmark Ed). 2013 Jan 1;18:725-33. http://www.ncbi.nlm.nih.gov/pubmed/23276956
Muchaonyerwa P. & Waladde S.M. (2007) Persistence of the pesticidal Bacillus thuringiensis protein expressed in Bt maize plant materials in two soils of the Central Eastern Cape, South Africa. South African Journal of Plant and Soil 24(1): 26-31. http://www.tandfonline.com/doi/abs/10.1080/02571862.2007.10634777#.UqF1Ykko7IU
Mulder C, Wouterse M, Raubuch M, Roelofs W & Rutgers M. (2006) Can transgenic maize affect soil microbial communities? PLoS Comput Biol. 2006 September; 2(9): e128.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1584322/?tool=pmcentrez&rendertype=abstract
Mulder C, Wouterse M, Rutgers M. & Posthuma L. (2007) Transgenic maize containing the Cry1Ab protein ephemerally enhances soil microbial communities Ambio 36:359-361. http://www.ncbi.nlm.nih.gov/pubmed/17626475
Saxena D, Flores S and Stozsky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480.
http://www.ncbi.nlm.nih.gov/pubmed/10591205
Saxena D., Flores S. & Stotzky G. (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biology and Biochemistry 34:133-137.
http://www.sciencedirect.com/science/article/pii/S0038071701001614
Saxena, D., Flores, S., Stotzky, G. (2002) Vertical movement in soil of insecticidal Cry1Ab protein from Bacillus thuringiensis. Soil Biology and Biochemistry. 34: 111-120.
Saxena D, Stewart CN, Altosaar I, Shu Q & Stotzky G (2004) Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B.thuringiensis corn, potato, and rice but not of B.thuringiensis canola, cotton, and tobacco. Plant Physiology & Biochemistry 42 (5):383-387.
http://www.ncbi.nlm.nih.gov/pubmed/15191740
Seres, A., Kiss, I., Nagy, P., Sály, P., Darvas, B., & Bakonyi, G. (2014). Arbuscular mycorrhizal fungi colonisation of Cry3 toxin-producing Bt maize and near isogenic maize. Plant, Soil and Environment, 60(12), 569-573. http://agriculturejournals.cz/publicFiles/138179.pdf
Stotzky, G. (2000). Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality 29: 691-705. http://www.cabdirect.org/abstracts/20013067118.html
Stotzky G. (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant and Soil266:77- 89. http://www.mendeley.com/catalog/persistence-biological-activity-soil-insecticidal-proteins-bacillus-thuringiensis-especially-transgenic-plants-12/
Sun C, Wu Z, Zhang Y & Zhang L (2003) Effect of transgenic Bt rice planting on soil enzyme activities. Ying Yong Sgeng Tai Xue Bao 14:2261-2264.
http://www.ncbi.nlm.nih.gov/pubmed/15031930
Sun, X, L.J. Chen, Z.J. Wu, L.K. Zhou and H. Shimizu (2006) Soil persistence of Bacillus thuringiensis (Bt) toxin from transgenic Bt cotton tissues and its effect on soil enzyme activities. Biology and Fertility of Soils 43(5):617- 620.
http://link.springer.com/article/10.1007/s00374-006-0158-6
Tapp H and Stozsky G (1998) Persistence of the insecticidal toxin from Bacillus thuringiensis subsp kurstaki in soil. Soil Biol. Biochem. 30(4):471-476.
http://www.sciencedirect.com/science/article/pii/S003807179700148X
Venkateswerlu, G. & Stotzky, G. (1992) Binding of the protoxin and toxin proteins of Bacillus thuringiensis subspecies kurstaki and tenebrionis on clay minerals. Curr. Microbiol. 25, 225-233. http://link.springer.com/article/10.1007%2FBF01570723
A. G. Viktorov (2008) Influence of Bt-plants on soil biota and pleiotropic effect of δ-endotoxin-encoding genes Russian Journal of Plant Physiology November, Volume 55, Issue 6, pp 738-747 http://link.springer.com/article/10.1134/S1021443708060022#page-1
Yuan YG, GeF. (2010) Effects of transgenic Bt crops on non-target soil animals Ying Yong Sheng Ta iXue Bao.(JournalofAppliedEcology) 21(5):1339-45. http://www.ncbi.nlm.nih.gov/pubmed/20707123
Zhu, W., Lu, H., Hill, J., Guo, X., Wang, H., & Wu, W. (2014). 13C pulse-chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres. FEMS microbiology ecology, 87(3), 746-756. http://femsec.oxfordjournals.org/content/87/3/746.abstract
Nutrient/Antinutrient/Non-equivalence
Abdo E. M., et al. Chemical Analysis of BT corn “Mon- 810: Ajeeb-YG®” and its counterpart non-Bt corn “Ajeeb” IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278–5736. Volume 4, Issue 1 (Mar.–Apr. 2013), PP 55–60 http://iosrjournals.org/iosr-jac/papers/vol4-issue1/L0415560.pdf
Sarah Zanon Agapito-Tenfen, Miguel Pedro Guerra, Odd-Gunnar Wikmark and Rubens Onofre Nodari (2013) Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil Proteome Science ,11:46 http://www.proteomesci.com/content/11/1/46
Ali, S. E. B., Madi, Z. E., Hochegger, R., Quist, D., Prewein, B., Haslberger, A. G., & Brandes, C. (2014). Mutation Scanning in a Single and a Stacked Genetically Modified (GM) Event by Real-Time PCR and High Resolution Melting (HRM) Analysis. International journal of molecular sciences, 15(11), 19898-19923. http://www.mdpi.com/1422-0067/15/11/19898/pdf
Dinel H, Schnitzer M, Saharinen M, Meloche F, Paré T, Dumontet S, Lemee L Ambles A (2003). Extractable soil lipids and microbial activity as affected by Bt and Non -Bt Maize grown on a silty clay loam soil. J. Environ. Sci. Health. 38: 211-219. http://www.ncbi.nlm.nih.gov/pubmed/12617558
Poerschmann J, Gathmann A, Augustin J, Langer U and Górecki T.(2005) Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize Characterization of lignin patterns. Journal of Environmental Quality 34:1508-1518. http://www.ncbi.nlm.nih.gov/pubmed/16091603
Ahmed M. Rayan, Zakarya. S. El-Shamei, Adel A. Shatta, Amal A. Gab-Alla, Eid A. Moussa (2015) Physicochemical properties of starch isolated from genetically modified corn (Ajeeb YG). Journal of Agroalimentary Processes and Technologies 2015, 21(1), 53-66 http://journal-of-agroalimentary.ro/admin/articole/1231L9_Vol_21(1)_2015_53_66.pdf
Saxena D and Stotzky G. (2001) Bt corn has a higher lignin content than non-Bt corn. American Journal of Botany 88: 1704-1706.
http://www.amjbot.org/content/88/9/1704.short
Feeding(Bt)
E. Abdo, O. Barbary and O. Shaltout, “Feeding Study with Bt Corn (MON810: Ajeeb YG) on Rats: Biochemical Analysis and Liver Histopathology,” Food and Nutrition Sciences, Vol. 5 No. 2, 2014, pp. 185-195. http://www.scirp.org/journal/PaperInformation.aspx?paperID=42183#.Uy8XQIVVitM
Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y. (2003) Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci. 2003 Oct;81(10):2546-51. http://www.ncbi.nlm.nih.gov/pubmed/14552382
Joël Spiroux de Vendômois, François Roullier, Dominique Cellier, Gilles-Eric Séralini (2009) A Comparison of the Effects of Three GM Corn Varieties on Mammalian Health Int J Biol Sci; 5(7):706-726.
http://www.biolsci.org/v05p0706.htm
de Vendômois JS, CellierD VC, Clair E, Mesnage R, Séralini G-E (2010) Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci 6:590–598 http://www.ijbs.com/v06p0590.htm
Dona A, Arvanitoyannis IS. (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr. Feb;49(2):164-75.
http://www.ncbi.nlm.nih.gov/pubmed/18989835
El-Shamei, Z. S. et al. Histopathological Changes in Some Organs of Male Rats Fed on Genetically Modified Corn (Ajeeb YG). Journal of American Science, 2012;8(10) http://www.academia.edu/3405345/Histopathological_Changes_in_Some_Organs_of_Male_Rats_Fed_on_Genetically_Modified_Corn_Ajeeb_YG_
Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. (2008) Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem. Dec 10;56(23):11533-9.
http://www.ncbi.nlm.nih.gov/pubmed/19007233
Gab-Alla, A. et al. (2012) Morphological and Biochemical Changes in Male Rats Fed on Genetically Modified Corn (Ajeeb YG). Journal of American Science, ;8(9) http://www.academia.edu/3405390/Morphological_and_Biochemical_Changes_in_Male_Rats_Fed_on_Genetically_Modified_Corn_Ajeeb_YG_
Gu J, Krogdahl Å, Sissener NH, Kortner TM, Gelencser E, Hemre GI, Bakke AM. (2013) Effects of oral Bt-maize (MON810) exposure on growth and health parameters in normal and sensitised Atlantic salmon, Salmo salar L. Br J Nutr. Apr 28;109(8):1408-23. http://www.ncbi.nlm.nih.gov/pubmed/23182224
Hanusova L., Rehout V., Citek J. (2011) Transgene Fragments in the Blood and Tissue of Chicken Fed with Genetically Modified Soy and Maize. Animal Nutrition and Feed Technology, 2011, Volume : 11, Issue : 2 page 249-256 http://www.indianjournals.com/ijor.aspx?target=ijor%3Aanft&volume=11&issue=2&article=012
G I Hemre, A Sagstad, A M Bakke-Mckellep, A Danieli, R Acierno, M Maffia, M FrØYstad, Å Krogdahl, M Sanden (2007) Nutritional, physiological, and histological responses in Atlantic salmon, Salmo salar L. fed diets with genetically modified maize Aquaculture Nutrition Volume: 13, Issue: 3, Pages: 186-199 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2095.2007.00465.x/abstract
SERDAR KARAKUŞLU (2014) THE INVESTIGATION OF THE POTENTIAL EFFECTS OF GENETICALLY MODIFIED (GMO) MAIZE (Zea mays L.) ON SWISS ALBINO MICE. JUNE 2014, 25 Pages http://acikerisim.giresun.edu.tr/xmlui/handle/123456789/47
Kiliç A, Akay MT. (2008) A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem Toxicol. 2008 Mar;46(3):1164-70.
http://www.ncbi.nlm.nih.gov/pubmed/18191319
Hasan Kiliçgün, Cebrail Gürsul, Mukadder Sunar, Gülden Gökşen (2013) The Comparative Effects of Genetically Modified Maize and Conventional Maize on Rats J Clin Anal Med ;4(2): 136-9 http://www.jcam.com.tr/files/KATD-983.pdf
Kroghsbo S, Madsen C, Poulsen M, Schrøder M, Kvist PH, Taylor M, Gatehouse A, Shu Q, Knudsen I. (2008) Immunotoxicological studies of genetically modified rice expressing PHA-E lectin or Bt toxin in Wistar rats. Toxicology. Mar 12;245(1-2):24-34.
http://www.ncbi.nlm.nih.gov/pubmed/18215453
Paris K., Aris A, (2010) [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food]. Gynecol Obstet Fertil. 2010 Dec;38(12):747-53. http://www.sciencedirect.com/science/article/pii/S1297958910002717
A Sagstad, M Sanden, Ø Haugland, A-C Hansen, P A Olsvik, G-I Hemre (2007) Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. Journal of Fish Diseases Volume 30, Issue 4, pages 201–212
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2761.2007.00808.x/abstract
Séralini GE, Cellier D, de Vendomois JS.(2007) New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol. May;52(4):596-602.
http://www.ncbi.nlm.nih.gov/pubmed/17356802
Séralini G-E, de Vendômois JS, Cellier D, Sultan C, Buiatti M, GallagherL AM, Dronamraju KR (2009) How subchronic and chronic health effects can be neglected for GMOs, pesticides or chemicals. Int J Biol Sci 5:438–443
http://www.ijbs.com/v05p0438.htm
Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Ross RP, Cassidy JP, Lawlor PG. (2012) Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs Br J Nutr. Feb;107(3):364-71.
http://www.ncbi.nlm.nih.gov/pubmed/21733303
Irena M Zdziarski, John W Edwards, Judy Carman, Adrian Jones, Marni Spillanie, Ysabella Van Sebille, Julie I Haynes (2012) GM feed and its effect on the stomach mucosa of rat. 6th Australian Health and Medical Research Congress 2012 http://ahmrc-2012.p.asnevents.com.au/schedule/abstract/3114
I.M. Zdziarski, J.W. Edwards, J.A. Carmanb, J.I. Haynes (2014) GM crops and the rat digestive tract: A critical review. Environment International Volume 73, December 2014, Pages 423–433 http://www.sciencedirect.com/science/article/pii/S0160412014002669
Health
Animal
Moreno-Fierros, L. García, N. Gutiérrez,R. López-Revilla, R.Vázquez-Padrón, RI..(2000). Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect 2(8): 885-90;
Qianying Guo, Shuangjia Wang, Yu Wang, Liren Wei, Han Zhu, Lingyan Zhu, Junli Shang, Yong Li,, Junbo Wang (2014) Embryotoxicity of Transgenic Rice TT51 and Cry1Ab Bt Insecticidal Toxin in Rat Post Implantation Whole Embryo Culture. Journal of Food and Nutrition Research, 2(3), 115-121. http://pubs.sciepub.com/jfnr/2/3/4/
Vazquez Padron, R.I., Moreno Fierros, L., Neri Bazan, L., De la Riva, G.A. and Lopez Revilla, R. (1999) Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sciences 64, 1897-1912. http://www.ncbi.nlm.nih.gov/pubmed/10353588
Vázquez RI, Moreno-FierrosL, Neri-BazanL, DeLaRiva GA, Lopez-Revilla R.(1999) Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scandinavian Journal of Immunology. 49(6):578-84. http://www.ncbi.nlm.nih.gov/pubmed/10354369
Vazquez-Padron, R.I., Moreno-Fierros, L., Neri-Bazan, L., Martinez-Gil, A.F., de la Riva, G.A. and Lopez-Revilla, R. (2000) Characterization of the mucosal and sytemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice. Brazilian Journal of Medical and Biological Research 33, 147-155. http://www.ncbi.nlm.nih.gov/pubmed/10657055
Vazquez Padron, R.I., Gonzalez Cabrera, J., Garcia Tovar, C., Neri Bazan, L., Lopez Revilla, R., Hernandez, M., Morena Fierros, L. and De la Riva, G.A. (2000) Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochemical and Biophysical Research Communications 271, 54-58.
http://www.ncbi.nlm.nih.gov/pubmed/10777680
Human
Bernstein IL, Bernstein, J.A., Miller,M., Tierzieva, S., Bernstein, D.I.,Lummus, Z.Selgrade, M.K., Doerfler, D.L., and Seligy,V.L. (1999) Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environmental Health Perspectives. July; 107(7):575582.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566654/
R. Mesnage, E. Clair, S. Gress, C. Then, A. Székács, G.-E. Séralini (2013) Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide Journal of Applied Toxicology Volume 33, Issue 7, pages 695–699, July http://onlinelibrary.wiley.com/doi/10.1002/jat.2712/abstract
Secondary Pest Infestations
Hagenbucher S, Wackers FL, Wettstein FE, Olson DM, Ruberson JR, Romeis J.(2013) Pest trade offs in technology : reduced damage by caterpillars in Bt cotton benefits aphids. Proc R Soc B 20130042.
Ho, P., & Xue, D. (2008). Farmers’ perceptions and risks of agro-biotechnological innovations in China: ecological change in Bt cotton?. International Journal of Environment and Sustainable Development, 7(4), 396-417. http://inderscience.metapress.com/content/r49592432246273t/
David R. Just, Shenghui Wang, Per Pinstrup-Andersen (2006) ‘Tarnishing Silver Bullets : Bt Technology Adoption, Bounded Rationality and the Outbreak of Secondary Pest Infestations in China’, paper presented at the American Agricultural Economics Association Meeting, Long Beach, California,USA,22-26July http://academic.research.microsoft.com/Paper/5150524.aspx
Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y. (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science. May 28;328(5982):1151-4. http://www.ncbi.nlm.nih.gov/pubmed/20466880
Hui Ma, Ming Zhao, Hongyan Wang, Zhongmin Wang, Qi Wang, Hezhong Dong (2014) Comparative incidence of cotton spider mites on transgenic Bt versus conventional cotton in relation to contents of secondary metabolites Arthropod-Plant Interactions February, Volume 8, Issue 1, pp 1-7 http://link.springer.com/article/10.1007/s11829-014-9291-6#page-1
Jane Qiu (2010) GM crop use makes minor pests major problem Nature 13 May http://www.nature.com/news/2010/100513/full/news.2010.242.html
Rohini RS, Mallapur CP, Udikeri SS. (2009) Incidence of mirid bug, Creontiades biseratense (Distant) on Bt cotton in Karnataka. Karnataka Journal of Agricultural Sciences. 22: 680–681. http://www.cabdirect.org/abstracts/20103004324.html
Then, C. (2010). New pest in crop caused by large scale cultivation of Bt corn. In Large-area Effects of GM-Crop Cultivation. Theorie in der Ökologie 16, B. Breckling and R. Verhoeven, eds. (Frankfurt, Peter Lang), pp. 94-97.
Wang, S., Just, D.R. and Pinstrup-Andersen, P. (2008)’ Bt Cotton and Secondary Pests’, International Journal of Biotechnology 10(2-3):113-21 http://www.ingentaconnect.com/content/ind/ijbt/2008/00000010/F0020002/art00001
Jennifer H. Zhao, Peter Ho, Hossein Azadi (2011) Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environmental Monitoring and Assessment. Volume 173, Issue 1-4,pp 985-994 http://www.ncbi.nlm.nih.gov/pubmed/20437270
Target resistance(Bt)
Pallava Bagla (2010) Hardy Cotton-Munching Pests Are Latest Blow to GM Crops Science 19 March : Vol. 327 no. 5972 p. 1439 http://www.sciencemag.org/content/327/5972/1439.summary*
Silvia Caccia, Carmen Sara Hernández-Rodríguez, Rod J. Mahon, Sharon Downes, William James, Nadine Bautsoens, Jeroen Van Rie, and Juan Ferré (2010) Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species. PLoS ONE 5(4):e9975
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848615/#!po=63.3333
Campagne P, Kruger M, Pasquet R, Le Ru B, Van den Berg J (2013) Dominant Inheritance of Field-Evolved Resistance to Bt Corn in Busseola fusca. PLoS ONE 8(7): e69675. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0069675
Carriere Y, Crowder DW and Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evolutionary Applications (SpecialIssue :Evolution in Agro-Ecosystems) Vol.3,Issue5-6:561-73.
Catangui MA and Berg RK (2006) Western bean cutworm, Striacosta albicosta(Smith)(Lepidoptera: Noctuidae),as a potential pest of transgenic Cry1Ab Bacillus thuringiensis corn hybrids in SouthDakota. Environmental Entomology 35:1439-1452.
A. L. B. Crespo, T. A. Spencer, A. P. Alves, R. L. Hellmich, E. E. Blankenship, L. C. Magalhäesa and B. D. Siegfried (2009) On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis, Pest. Manag. Sci., vol. 65, pp. 1071–1081, http://onlinelibrary.wiley.com/doi/10.1002/ps.1793/abstract
Béla Darvas , Éva Lauber, Judit Kincses, Gyöngyi Vajdics, Judit Juracsek and András Székács (2005) Bt -maize originated Cry1Ab toxin resistant Plodia interpunctella Abs. Növényvédelmi Tudományos Napok 51 : 9.
Dhurua S and Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pinkbollworm, Pectinophora gossypiella(Saunders)( Lepidoptera : Gelechiidae) from India. Pest Management Science. Vol.67(8):898-903. http://www.ncbi.nlm.nih.gov/pubmed/21438121
Downes S, Parker T and Mahon R (2010) Incipient resistance of Helicoperva punctigera to the Cry2Ab Bt toxin in Bollgard II cotton. PLoSOne5(9):e12567. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935350/
Fangneng H, Rogers L B and Xiaoyi W (2007) Resistance of sugarcane borer to Bacillus thuringiensis Cry1Ab toxin. Entomologia Experimentalis et Applicata 124(1):117-123. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2007.00560.x/abstract
Juliano Ricardo Farias, David A. Andow, Renato Jun Horikoshi, Rodrigo José Sorgatto, Pablo Fresia, Antonio Cesar dos Santos, Celso Omoto (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protection Volume 64, October 2014, Pages 150–158 http://www.sciencedirect.com/science/article/pii/S026121941400204X
Farias, J. R., Horikoshi, R. J., Santos, A. C., & Omoto, C. (2014). Geographical and Temporal Variability in Susceptibility to Cry1F Toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations in Brazil. Journal of Economic Entomology, 107(6), 2182-2189. http://www.bioone.org/doi/abs/10.1603/EC14190
Ferro DN (1993) Potential for resistance to Bacillus thuringiensis : Colorado potato beetle (Coleoptera: Chrysomelidae)-a model system. American Entomologist 39:38-44. http://www.researchgate.net/publication/233544862_ Potential_for_Resistance_to_Bacillus_thuringiensis_Colorado_Potato_Beetle_(Coleoptera_Chrysomelidae)A_Model_System
Fox JL (1996) Bt cotton infestations renew resistance concerns. Nature Biotechnology 14: 1070. http://www.nature.com/nbt/journal/v14/n9/full/nbt0996-1070.html
García, M., Ortego, F., Hernández‐Crespo, P., Farinós, G. P., & Castañera, P. (2015). Inheritance, fitness costs, incomplete resistance and feeding preferences in a laboratory‐selected MON810‐resistant strain of the true armyworm Mythimna unipuncta. Pest management science. http://onlinelibrary.wiley.com/doi/10.1002/ps.3971/abstract
A. J. Gassmann, J. L. Petzold-Maxwell, R. S. Keweshan and M. W. Dunbar, (2011) Field-evolved resistance to Bt maize by western corn rootworm, PLoS ONE, vol. 6 (7), pp. e22629
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0022629
Aaron J. Gassmann, Jennifer L. Petzold-Maxwell, Eric H. Clifton, Mike W. Dunbar, Amanda M. Hoffmann, David A. Ingber, and Ryan S. Keweshan (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize http://www.pnas.org/content/early/2014/03/12/1317179111.abstract
Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD. (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol. May;71(5):2558-63. http://www.ncbi.nlm.nih.gov/pubmed/15870346?dopt=Abstract
Guo, Z., Kang, S., Chen, D., Wu, Q., Wang, S., Xie, W., … & Zhang, Y. (2015). MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005124
Huang, F., L. Buschman and R Higgins (1999) Inheritance of resistance to Bacillus thuringiens is toxin(DipelES )in the European cornborer. Science 284:965-967. http://www.ncbi.nlm.nih.gov/pubmed/10320377
Huang F, Leonard BR, Wu X. (2007) Resistance of sugarcane borer to Bacillus thuringiensis Cry1Ab toxin. Entomologia Experimentalis et Applicata. 124: 117-123. http://www.researchgate.net/publication/227537730_Resistance_of_sugarcane_borer_to_Bacillus_thuringiensis_Cry1Ab_toxin
Huang F, Qureshi JA, Meagher RL Jr, Reisig DD, Head GP, et al. (2014) Cry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize. PLoS ONE 9(11): e112958. doi:10.1371/journal.pone.0112958
Alida F Janmaat and Judith Myers (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc Biol Sci. November 7; 270(1530): 2263–2270. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691497/
Jayaraman K. S. (2005) Monsanto’s Bollgard potentially compromised in India. Nat. Biotechnol. 23: 1326.
http://www.nature.com/nbt/journal/v23/n11/abs/nbt1105-1326.html
Juan Luis Jurat-Fuentes, Fred L. Gould, and Michael J. Adang (2003) Dual Resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa Toxins in Heliothis virescens Suggests Multiple Mechanisms of Resistance Appl Environ Microbiol. 2003 October; 69(10): 5898–5906. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201244/
Kain, W., Song, X., Janmaat, A. F., Zhao, J. Z., Myers, J., Shelton, A. M., & Wang, P. (2014). Resistance of Trichoplusia ni populations selected by Bacillus thuringiensis sprays to pyramided Bt cotton plants expressing Cry1Ac and Cry2Ab. Applied and environmental microbiology, AEM-03382. http://aem.asm.org/content/early/2014/12/02/AEM.03382-14.short
Kruger, M., Van Rensburg, J. B. J., & Van den Berg, J. (2011). Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environmental Entomology, 40(2), 477-483. http://ee.oxfordjournals.org/content/40/2/477.abstract
Meihis LN, Higdon ML, Siegfried BD, Miller NJ, Sappington TW, Ellersieck MR, Spencer TA & Hibbard BE (2008) Increased survival of western corn rootworm on transgenic corn within 3 generations of on-plant greenhouse selection. Proc Natl Acad Sci USA 105(49): 19177-82.
http://www.ncbi.nlm.nih.gov/pubmed/19047626
Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, et al. (2015) Evidence of Field-Evolved Resistance of Spodoptera frugiperda to Bt Corn Expressing Cry1F in Brazil That Is Still Sensitive to Modified Bt Toxins. PLoS ONE 10(4): e0119544. doi:10.1371/journal.pone.0119544 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119544
Nair, R., Kamath, S. P., Mohan, K. S., Head, G., & Sumerford, D. V. (2015). Inheritance of field‐relevant resistance to the Bacillus thuringiensis protein Cry1Ac in Pectinophora gossypiella (Lepidoptera: Gelechiidae) collected from India. Pest management science. http://onlinelibrary.wiley.com/doi/10.1002/ps.4023/abstract
Oswald, K. J., French, B. W., Nielson, C. and Bagley, M. (2012), Assessment of fitness costs in Cry3Bb1-resistant and susceptible western corn rootworm (Coleoptera: Chrysomelidae) laboratory colonies. Journal of Applied Entomology, 136: 730–740.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.2012.01704.x/abstract
Dominic D. Reisig, North Carolina State University; Francis P.F. Reay-Jones, Clemson University. Inhibition of Helicoverpa zea Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab. Environmental Entomology, May 2015 DOI: 10.1093/ee/nvv076 http://ee.oxfordjournals.org/content/early/2015/05/20/ee.nvv076
Shelton AM Jr, Robertson JL and Tang JD (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J.Econ.Entomol.86,697-705.
http://www.ingentaconnect.com/content/esa/jee/1993/00000086/00000003/art00009
Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038
http://www.bioone.org/doi/abs/10.1603/EC10040
TABASHNIK, BRUCE E.; FINSON, NAOMI; JOHNSON, MARSHALL W. (1991) Managing Resistance to Bacillus thuringiensis: Lessons from the Diamondback Moth (Lepidoptera: Plutellidae Journal of Economic Entomology, Volume 84, Number 1, February, pp. 49-55(7) http://www.ingentaconnect.com/content/esa/jee/1991/00000084/00000001/art00008
Tabashnik BE, Gould F and Carriere Y (2004) Delaying evolution of insect resistance to transgenic crop sby decreasing dominance and heritability. J Evol Biol. 17(4): 904-12. http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2004.00695.x/abstract
Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202
http://www.nature.com/nbt/journal/v26/n2/full/nbt1382.html
B. E. Tabashnik, J. B. J. van Rensburg and Y. Carriére, (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data, J. Econ. Entomol., vol. 102, pp. 2011–2025
http://www.ncbi.nlm.nih.gov/pubmed/20069826
Tabashnik BE, Gould F. (2012) Delaying corn rootworm resistance to Bt corn. J Econ Entomol. Jun;105(3):767-76.
http://www.ncbi.nlm.nih.gov/pubmed/22812111
Tabashnik BE, Brévault T, Carrière Y. (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. Jun;31(6):510-21
http://www.ncbi.nlm.nih.gov/pubmed/23752438
Van den Berg, J., et al. (2013) Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. Crop Protection. Vol 54 (154- 160). http://www.sciencedirect.com/science/article/pii/S0261219413002093
van Rensburg JBJ (2007) First report of field resistance by the stemborer, Busseola fusca(Fuller) to Bt transgenic maize. S. Afr.J. Plant Soil 24(3):147-151.
Haonan Zhang, Wen Tian Jing Zhao, Lin Jin Jun, Yang Chunhui ,Liu Yihua, Yang Shuwen, Wu Kongming, Wu Jinjie Cui, Bruce E.Tabashnik and Yidong Wu (2012) Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proceedings of the National Academy of Sciences, vol.109, issue 26,pp. 10275-10280 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387040/
Liping Zhang, B. Rogers Leonard, Mao Chen, Thomas Clark, Konasale Anilkumar, Fangneng Huang (2014) Fitness costs and stability of Cry1Ab resistance in sugarcane borer, Diatraea saccharalis (F.) Journal of Invertebrate Pathology, Volume 117, March 2014, Pages 26–32 http://www.sciencedirect.com/science/article/pii/S0022201114000160
Non-Target Organisms(Bt)
A. Ashouri, Dominique Michaud, Conrad Cloutier (2001) Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata , variously affect the potato aphid parasitoid Aphidius nigripes BioControl December, Volume 46, Issue 4, pp 401-418 http://link.springer.com/article/10.1023%2FA%3A1014123712776#page-1
Azimi, S., Rahmani, S., Tohidfar, M., Ashouri, A., Bandani, A., & Talaei-Hassanlouei, R. (2014). Interaction between Bt-transgenic cotton and the whitefly’s parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae). Journal of Plant Protection Research, 54(3), 272-278. http://www.degruyter.com/view/j/jppr.2014.54.issue-3/jppr-2014-0041/jppr-2014-0041.xml
Baur ME, Boethel DJ (2003). Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol. Control, 26: 325-332 http://www.sciencedirect.com/science/article/pii/S1049964402001603
Burgio G, Lanzoni A, Accinelli G, Dinelli G, Bonetti A, Marotti I, Ramilli F. (2007) Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape. http://www.ncbi.nlm.nih.gov/pubmed/17411484
Chen M, Ye G, Liu Z, Fang Q, Hu C, Peng Y, Shelton AM (2009) Analysis of Cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology 18:230–238 http://link.springer.com/article/10.1007%2Fs10646-008-0276-z
Duan JJ, Lundgren JG, Naranjo S, Marvier M. (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett.6(1):74-77 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817261/
Hansen, L. S., Lövei, G. L. and Székács, A. (2013), Survival and development of a stored-product pest, Sitophilus zeamais (Coleoptera: Curculionidae), and its natural enemy, the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae), on transgenic Bt maize. Pest. Manag. Sci., 69: 602–606. http://www.ncbi.nlm.nih.gov/pubmed/23044867
Jesse LCH, Obrycki JJ. (2004) Survival of experimental cohorts of monarch larvae following exposure to transgenic Bt corn pollen and anthers. In: Oberhauser KS, Solensky MJ, eds. The Monarch Butterfly: Biology and Conservation. Ithaca, NY: Cornell University Press :69–75. http://t.monarchlab.org/Lab/app/upload/pdf/CON-6%20Jesse%20and%20Obrycki%20survival%20of%20experimental%20cohorts%20Monarch%20Chapter%209.pdf
Lang A, Otto M. (2010) A synthesis of laboratory and field studies on the effects of transgenicBacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomologia Experimentalis et Applicata. 135:121–134. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2010.00981.x/abstract
Lovei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies : a detailed review of laboratory studies. Environ Entomol. 38(2):293-306 http://www.ncbi.nlm.nih.gov/pubmed/19389277
Meissle M, Vojtech E, Poppy GM. (2005) Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae). Transgenic Res. Apr;14(2):123-32. http://www.ncbi.nlm.nih.gov/pubmed/16022384
JOHN J. OBRYCKI, JOHN E. LOSEY, ORLEY R. TAYLOR, and LAURA C. H. JESSE (2001) Transgenic Insecticidal Corn: Beyond Insecticidal Toxicity to Ecological Complexity BioScience May : Vol. 51, Issue 5, pg(s) 353-361 http://www.bioone.org/doi/abs/10.1641/0006-3568(2001)051%5B0353%3ATICBIT%5D2.0.CO%3B2
Obryki, J.J., J.R. Ruberson, J.E. Losey. (2004) Interactions between natural enemies and transgenic insecticidal crops. p. 83-206. In L.E. Ehler et al. (ed) Genetics, evolution and biological control. CABI Publ., UK. http://www.cabdirect.org/abstracts/20033208632.html;jsessionid=1E0EA420B2896BA7A21AE0AF9C5A442D
Joe N Perry, Yann Devos, Salvatore Arpaia, Detlef Bartsch, Christina Ehlert, Achim Gathmann, Rosemary S Hails, Niels B Hendriksen, Jozsef Kiss, Antoine Messéan, Sylvie Mestdagh, Gerd Neemann, Marco Nuti, Jeremy B Sweet, and Christoph C Tebbe (2012) Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure J Appl Ecol. February; 49(1): 29–37.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321227/#__ffn_sectitle
Ponsard, Sergine, Andrew P. Gutierrez and Nicholas J. Mills 2002. Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four Heteropteran predators. Environmental Entomology31: 1197-1205. http://www.bioone.org/doi/abs/10.1603/0046-225X-31.6.1197?journalCode=enve
Rovenska, G., R. Zemek, J.E.U. Schmidt, and A. Hilbeck (2005) Altered host plant preference ofTetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari: Tetranychidae, Phytoseiidae) on transgenic Cry3Bb-eggplants. Biological Control 33: 293-300. http://www.sciencedirect.com/science/article/pii/S1049964405000708
Wold SJ, Burkness EC, Hutchison WD, Venette RC. In-field monitoring of beneficial insect populations in transgenic sweet corn expressing a Bacillus thuringiensis toxin. J Entomol Sci 2001; 36: 177. http://www.researchgate.net/publication/233920618_In-Field_Monitoring_of_Beneficial_Insect_Populations_in_Transgenic_Corn_Expressing_a_Bacillus_thuringiensis_Toxin/file/d912f50cf38bb550d6.pdf.
Yuan Y, Ke X, Chen F, Krogh PH, Ge F. (2011) Decrease in catalase activity of Folsomia candida fed a Bt rice diet. Environ Pollut. Dec;159(12):3714-20. http://www.ncbi.nlm.nih.gov/pubmed/21835518
ZHOU Ji, WEI Bao-Yang, LI Wen-Jing, WANG Zhi (2014) The effect of Cry1Ab protein in embryo development and chemical content in Pardosa pseudoannulata. Acta Arachnologica Sinica 2014, 23 (1) http://d.wanfangdata.com.cn/periodical_zxxb201401013.aspx
Zwahlen C, Andow DA. (2005) Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn. Environ Biosafety Res. Apr-Jun;4(2):113-7. http://www.ncbi.nlm.nih.gov/pubmed/16402666
Arthropods(Bt)
Rusty Crayfish
Linn, M. D., & Moore, P. A. (2014). The Effects of Bt Corn on Rusty Crayfish (Orconectes Rusticus) Growth and Survival. Archives of environmental contamination and toxicology, 67(3), 436-443. http://link.springer.com/article/10.1007/s00244-014-0061-3#page-1
Water fleas
Bøhn T, Primicerio R, Hessen DO, Traavik T. (2008) Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety. Arch Environ Contam Toxicol. Nov;55(4):584-92.
http://www.ncbi.nlm.nih.gov/pubmed/18347840
Thomas Bøhn, Terje Traavik, and Raul Primicerio (2010) Demographic responses of Daphnia magna fed transgenic Bt-maize Ecotoxicology. February; 19(2): 419–430.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811247/
Springtails(Bt)
Bakonyi G, Szira F, Kiss I, Villányi I, Seres A, Székács A (2006) Preference tests with collembolas on isogenic and Bt-maize. Eur J Soil Biol 42:S132–S135
http://www.sciencedirect.com/science/article/pii/S1164556306000380
Insects
Butterflies(Bt)
Anderson, P. L., Hellmich, R. L. Sears, M. K., Sumerford, D. V., and Lewis, L. C. (2004) Effects of Cry1Ab-expressing corn anthers on monarch butterfly larvae. Environ. Entomol. 33: 1109-1115.
Anderson, P. L., Hellmich, R. L., Prasifka, J. R., and Lewis, L. C. (2005) Effects on fitness and behavior of monarch butterfly larvae exposed to a combination of Cry1Ab-expressing corn anthers and pollen. Environ. Entomol. 34:944-952.
B. Darvas, A. Csóti, A. Gharib, L. Peregovits, L. Ronkay, É. Lauber and A. L. Polgár (2004) Some data to the risk analysis of Bt-corn pollen and protected Lepidoptera species in Hungary Növényvédelem, vol. 40, pp. 441–449. http://www.bdarvas.hu/tudomany/okotoxikologia/idn4004
Dively G.P., Rose R., Sears M.K., Hellmich R.L., Stanley- Horn D.E., Calvin D.D. Russo J.M. & P.L.Anderson. (2004) Effects on monarch butterfly larvae(Lepidoptera: Danaidae)after continuous exposure to Cry1Ab expressing corn during anthesis. Environmental Entomology33:1116-1125. http://www.bioone.org/doi/abs/10.1603/0046-225X-33.4.1116
Felke M, Langenbruch GA, Feiertag S, Kassa A. (2010) Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae) Environmental Biosafety Research. ;9:5–12. http://www.ncbi.nlm.nih.gov/pubmed/21122482
Laura C. Hansen Jesse, John J. Obrycki (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly Oecologia, October, Volume 125, Issue 2, pp 241-248 http://link.springer.com/article/10.1007%2Fs004420000502
Niels Holst, Andreas Lang, Gabor Lövei, Mathias Otto (2013) Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland Ecological Modelling 250 (2013) 126–133 http://www.sciencedirect.com/science/article/pii/S0304380012005315
Lang A, Vojtech E. (2006) The effects of pollen consumption of transgenic Bt maize on the common swallowtail,Papilio machaon L.(Lepidoptera, Papilionidae). Basic and Applied Ecology; 7:296-306 http://www.sciencedirect.com/science/article/pii/S1439179105001246
John E. Losey, Linda S. Rayor & Maureen E. Carter (1999) Transgenic pollen harms monarch larvae Nature 399, 214 (20 May) http://www.nature.com/nature/journal/v399/n6733/abs/399214a0.html
Paula DP, Andow DA, Timbó RV, Sujii ER, Pires CS, Fontes EM (2014) Uptake and transfer of a Bt toxin by a Lepidoptera to its eggs and effects on its offspring. PLoS One. 2014 Apr 18;9(4):e95422. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991689/
Patricia L Prasifka, Richard L Hellmich, Jarrad R Prasifka, Leslie C Lewis (2007) Effects of Cry1Ab-expressing corn anthers on the movement of monarch butterfly larvae. Environmental Entomology Volume: 36, Issue: 1, Pages: 228-233 http://www.ncbi.nlm.nih.gov/pubmed/17349137
Stanley-Horn D.E ,Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R, Jesse LC, Losey JE, Obrycki JJ and Lewis L (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proceedings of the National Academy of Sciences 98 (21): 11931-11936.
Zangerl AR, McKenna D, Wraight CL, Carroll M, Ficarello P, Warner Rand MR Berenbaum (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and blackswallowtail caterpillars under field conditions. Proc. National Academy of Science USA 98:11908-11912. http://www.pnas.org/content/98/21/11908.full
Bees(Bt)
Han P, Niu CY, Lei CL, Cui JJ, Desneux N. (2010) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology. Nov;19(8):1452-9. http://www.ncbi.nlm.nih.gov/pubmed/20700762
Ricardo RAMIREZ-ROMERO, Josette CHAUFAUX, Minh-Hà PHAM-DELÈGUE (2005) Effects of Cry1Ab protoxin, deltamethrin and imidaclopridon the foraging activity and the learning performancesof the honeybee Apis mellifera, a comparative approach Apidologie 36 601–611 http://www.academia.edu/1225695/Effects_of_Cry1Ab_protoxin_deltamethrin_and_imidacloprid_on_the_foraging_activity_and_the_learning_performances_of_the_honeybee_Apis_mellifera_a_comparative_approach
Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Saf. Jun;70(2):327-33 http://www.ncbi.nlm.nih.gov/pubmed/18206234
SABUGOSA-MADEIRA, B.; ABREU, I.; RIBEIRO, H.; CUNHA, M. Bt Transgenic maize pollen and silent poisoning of the hive. Journal of Apicultural Research, v. 46, n. 1, p. 57-58, 2007. http://www.researchgate.net/publication/216448583_Bt_transgenic_maize_pollen_and_the_silent_poisoning_of_the_hive
SABUGOSA-MADEIRA, B. E. R. N. A. R. D. O., & ABREU, I. (2009). O pólen de milho geneticamente modificado. Possíveis implicaçoes no desequilíbrio ecológico das colmeias. Revista Real Academia Galega de Ciencias, 28, 71-85. http://www.ragc.cesga.es/sites/default/files/revistas/articulos/pdf/polen_do_milho.pdf
Dung Beetle
Campos, R. C., & Hernández, M. I. (2015). Changes in the dynamics of functional groups in communities of dung beetles in Atlantic forest fragments adjacent to transgenic maize crops. Ecological Indicators, 49, 216-227. http://www.sciencedirect.com/science/article/pii/S1470160X14004750
Green Lacewing(Bt)
DUTTON A.; KLEIN H.; ROMEIS J.; BIGLER F. (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea Ecological Entomology Volume 27, Issue 4, pages 441–447, August http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.2002.00436.x/full
Hilbeck A., Baumgartner M, Fried PM and Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperlacarnea. Environmental Entomology 276:480- 487. http://www.cabdirect.org/abstracts/19981106963.html;jsessionid=7C2D477A16F33C54B3E6F95D032BA8C7
Hilbeck, A., Moar, W. J., Pusztai-Carey, M., Filippini, A. and Bigler, F. (1999), Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis et Applicata, 91: 305–316. doi: 10.1046/j.1570-7458.1999.00497.x
Hilbeck, Angelika; Moar, William J.; Pusztai-Carey, Marianne; Filippini, Agata; Bigler, Franz (1998) Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae) Environmental Entomology (1998), 27(5), 1255-1263 http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1cXnt12ktbg%3D&pissn=1087-0156&pyear=2006&md5=0478eaa80368d5b17f804cc5d189c8dd
Meier, M. and A. Hilbeck (2001) Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Basic and Applied Ecology 2: 35-44. http://www.sciencedirect.com/science/article/pii/S1439179104700286
Obrist L.B., Dutton A.,Romeis J. & Bigler F. (2006) Biological activity of Cry1Ab toxin expressed by Bt maize following ingestion by herbivorous arthropods and exposure of the predator Chrysoperla carnea. Bio Control 51:31-48. http://link.springer.com/article/10.1007%2Fs10526-005-2936-8
Ladybird(Bt)
Angelika Hilbeck, Joanna M McMillan, Matthias Meier, Anna Humbel, Juanita Schläpfer-Miller and Miluse Trtikova (2012) A controversy re-visited: Is the coccinellid Adalia bipunctata adversely affected by Bt toxins? Environmental Sciences Europe, 24:10 www.enveurope.com/content/24/1/10
Hilbeck A ,Meier M, Trtikova M. (2012) Underlying reasons of the controversy over adverse effects of Bt toxins on lady beetle and lacewing
larvae. Environmental Sciences Europe.24:9 www.enveurope.com/content/pdf/2190-4715-24-9.pdf
Jörg E. U. Schmidt, Cora U. Braun, Lisa P. Whitehouse, Angelika Hilbeck
(2009) Effects of Activated Bt Transgene Products (Cry1Ab, Cry3Bb) on Immature Stages of the Ladybird Adalia bipunctata in Laboratory Ecotoxicity Testing Archives of Environmental Contamination and Toxicology February Volume 56, Issue 2, pp 221-228
www.springerlink.com/content/4317km7733582u32/
Parasitoid Wasp
Desneux, N., Ramírez-Romero, R., Bokonon-Ganta, A. H., & Bernal, J. S. (2010). Attraction of the parasitoid Cotesia marginiventris to host (Spodoptera frugiperda) frass is affected by transgenic maize. Ecotoxicology, 19(7), 1183-1192. http://link.springer.com/article/10.1007/s10646-010-0502-3
Earthworms(Bt)
Frances van der Merwe, Carlos Bezuidenhout, Johnnie van den Berg, and Mark Maboeta (2012) Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm,Eisenia Andrei Sensors (Basel). December; 12(12): 17155–17167. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571831/
M.L. Vercesi , P.H. Krogh , M. Holmstrup (2005 ) Can Bacillus thuringiensis (Bt) corn residues and Bt-corn plants affect life-history traits in the earthworm Aporrectodea caliginosa? Applied Soil Ecology (Volume 32, Issue 2), 21.jun.06
http://www.sciencedirect.com/science/article/pii/S0929139305001241
Zwahlen C, Hilbeck A, Howald R and Nentwig W. (2003) Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Molecular Ecology 12(8):1077-1086. http://www.ncbi.nlm.nih.gov/pubmed/12753225
Fish(Bt)
Grisolia CK, Oliveira R, Domingues I, Oliveira-Filho EC, Monerat RG, Soares AM. (2009) Genotoxic evaluation of different delta-endotoxins from Bacillus thuringiensis on zebrafish adults and development in early life stages. Mutat Res. Jan 31;672(2):119-23.http://www.ncbi.nlm.nih.gov/pubmed/19061968
Mollusks
Mussels
Douville M, Gagne F, André C and Blaise C. (2009) Occurrence of the transgenic corn cry1Ab gene in freshwater mussels(Elliptio complanata)near cornfields: evidence of exposure by bacterial ingestion. Ecotoxicology and Environmental Safety 72:1725 http://www.ncbi.nlm.nih.gov/pubmed/18397807
Slugs
J. D. HARWOOD & J. J. OBRYCKI (2006) The detection and decay of Cry1Ab Bt-endotoxins within non-target slugs, Deroceras reticulatum (Mollusca: Pulmonata), following consumption of transgenic corn Biocontrol Science and Technology, 2006; 16(1/2): 77/88 www.uky.edu/~jdharw2/harwoodobrycki2006a.pdf
Nematodes
Höss S, Arndt M, Baumgarte S, Tebbe C.C, Nguyen H.T. and Jehle J.A.(2008) Effects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans. Ecotoxicology and Environmental Safety 70(2):334340. http://www.ncbi.nlm.nih.gov/pubmed/18068780
Need to Be Categorized
Accinelli, C.; Screpanti, C.; Vicari, A. & Catizone, P. (2004) Influence of insecticidal toxins from Bacillus thuringiensis subsp.kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agriculture, Ecosystems and Environment,103, 497-507.
http://www.sciencedirect.com/science/article/pii/S0167880903004080
*
Sarah Zanon Agapito-Tenfen, Vinicius Vilperte, Rafael Fonseca Benevenuto, Carina Macagnan Rover, Terje Ingemar Traavik and Rubens Onofre Nodari (2014) Effect of stacking insecticidal cry and herbicide toleranceepsps transgenes on transgenic maize proteome. BMC Plant Biology 2014, 14:346 http://www.biomedcentral.com/1471-2229/14/346/abstract
*
Aguilera M, Querci M, Balla B, Prospero A, Ermolli M, Van denEede G (2008) A Qualitative Approach for the Assessment of Genetic Stability of the MON810 Trait in Commercial Seed Maize Varieties. Food Anal .Methods 1:252258
*
Andow DA, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751
http://www.nature.com/nbt/journal/v24/n7/full/nbt0706-749.html
*
Monica Andreassen, Elena Rocca, Thomas Bøhn, Odd-Gunnar Wikmark, Johnnie van den Berg, Martinus Løvik, Terje Traavik & Unni Cecilie Nygaard (2014) Humoral and cellular immune responses in mice after airway administration of Bacillus thuringiensisCry1Ab and MON810 cry1Ab-transgenic maize. Food and Agricultural Immunology, 11 Dec 2014 http://www.tandfonline.com/doi/abs/10.1080/09540105.2014.988128#.VJtm7F4AA
*
Aris A, Leblanc S. (2011) Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol. May;31(4):528-33
http://www.ncbi.nlm.nih.gov/pubmed/21338670
*
A. Ashouri, Dominique Michaud, Conrad Cloutier (2001) Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata , variously affect the potato aphid parasitoid Aphidius nigripes BioControl December, Volume 46, Issue 4, pp 401-418 http://link.springer.com/article/10.1023%2FA%3A1014123712776#page-1
*
Gábor Bakonyi, Anna Dolezsai and András Székács (2010) Bt-maize (MON 810) effect on the collembolan Folsomia candida – some new aspects In B. Darvas et al. Eds (2010) Abs. GM-plants symposium of IXth ECE, page 206.
*
Bøhn, T., Primicerio, R.,and Traavik, T. (2012) The German ban on GM maize MON810: scientifically justified or unjustified? Environmental Sciences Europe 2012, 24:22
http://www.enveurope.com/content/24/1/22
*
Bondzio A, Lodemann U, Weise C, Einspanier R (2013) Cry1Ab Treatment Has No Effects on Viability of Cultured Porcine Intestinal Cells, but Triggers Hsp70 Expression. PLoS ONE 8(7): e67079 http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0067079
*
Thierry Brévault, Shannon Heuberger, Min Zhang, Christa Ellers-Kirk, Xinzhi Nic, Luke Masson, Xianchiun Li, Bruce E. Tabashnik, and Yves Carrière, (2013) Potential shortfall of pyramided transgenic cotton for insect resistance management PNAS April 9, vol. 110 no. 15 5806-5811
http://www.pnas.org/content/110/15/5806.abstract
*
Bruns HA, Abel CA (2003) Nitrogen fertility effects on Bt delta-endotoxin and nitrogen concentrations of maize during-early growth. Agron J 95:207–211 http://www.agronomy.org/publications/aj/abstracts/95/1/207
*
Bruns H.A. & Abel C.A. (2007) Effects of nitrogen fertility on Bt endotoxin levels in corn. Journal of Entomological Science 42(1):3534
http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=191785
*
H. Arnold Bruns (2014) Stacked-Gene Hybrids Were Not Found to Be Superior to Glyphosate-Resistant or Non-GMO Corn Hybrids. Crop Management 2014. Vol 13:–. No.1 https://www.agronomy.org/publications/cm/abstracts/13/1/CM-2013-0012-RS?access=0&view=pdf
*
Büchs, W.; Raubuch, M.; Prescher, S.; Behr, K.; Müller, A.; Roose, K. (2007) Impact of Ostrinia-resistant Bt-maize on microbial and invertebrate decomposer communities in field soils. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft No. 410 pp. 26-32 http://cabdirect.org/abstracts/20103140184.html;jsessionid=32C29EAED66F4560BF30ECAFF41F0581
*
Cao QJ, Xia H, Yang X, Lu BR. (2009) Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment. J Integr Plant Biol. Dec;51(12):1138-48. http://www.ncbi.nlm.nih.gov/pubmed/20021561
*
Chen, C. X., Wu, E., Yang, Y. Z., & Su, H. H. (2014). The transfer of Bt insecticidal protein to higher tropic levels via a transgenic cotton, then beet armyworm (Lepidoptera: Noctuidae) and their natural enemies. The Canadian Entomologist, 146(01), 1-7. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9160508&fileId=S0008347X13000412
*
Chilcutt CH. and Tabashnik BE. (2004) Contamination of refuges by Bacillus thuringensis toxin genes from transgenic maize. Proceedings of the National Academy of Sciences 101:7526-7529. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419639/
*
Chokshi, Atul H. (2010) Bt brinjal: premature approval for cultivation. Current Science, Vol. 98 Issue 6, p734 http://www.indiaenvironmentportal.org.in/content/301841/bt-brinjal-premature-approval-for-cultivation/
*
Clark B.W, Phillips T.A. & Coats J.R. (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops:a review. Journal of Agricultural and Food Chemistry 53:4643-4653. http://www.ncbi.nlm.nih.gov/pubmed/15941295
*
Tom Clarke, “Corn Could Make Cotton Pests Bt. Resistant,” Nature, Dec. 2, 2002. http://www.nature.com/news/1998/021202/full/news021202-3.html
*
Cloutier C, Boudreault S and Michaud D. (2008) Impact of Colorado potato beetle resistant potatoes on non-target arthropods : a meta-analysis of factors potentially involved in the failure of a Bt transgenic plant. Cahiers Agricultures 17(4):388-394
*
Carlos E Coviella, David JW Morgan, John T Trumble (2000) Interactions of Elevated CO2 and Nitrogen Fertilization: Effects on Production of Bacillus thuringiensis Toxins in Transgenic Plants. Environ. Entomol.29(4):781-787 http://www.bioone.org/doi/abs/10.1603/0046-225X-29.4.781
*
Darvas Béla, Lauber Éva, Bakonyi Gábor, Békési László, Székács András, Papp László, (2007) A MON 810-es GM-kukoricák környezettudományi megítélése Magyar Tudomány, 2007/08 1047. http://www.matud.iif.hu/07aug/13.html
*
Ingrid de Souza Freire, Ana Luisa Miranda-Vilela, Lilian Carla Pereira Barbosa, Erica Soares Martins, Rose Gomes Monnerat, and Cesar Koppe Grisolia (2014) Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice. Toxins (Basel). Oct 2014; 6(10): 2872–2885. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210873/#!po=88.4615
*
Antonio DiTommaso, Matthew R. Ryan, Charles L. Mohler, Daniel C. Brainard, Rachel E. Shuler, Leslie L. Allee, and John E. Losey (2014) Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation. Weed Science In-Press. http://www.wssajournals.org/doi/abs/10.1614/WS-D-14-00065.1
*
Dong HZ and Li WJ (2007) Variability of endotoxin expression in Bt transgenic cotton. J.Agron.CropSci. 193(1),2129. http://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2006.00240.x/citedby
*
Dorhout DL, Rice ME. Intraguild competition and enhanced survival of western bean cutworm (Lepidoptera: Noctuidae) on transgenic Cry1Ab (MON810) Bacillus thuringiensis corn. (2010) Journal of Economic Entomology. 103: 54–62. http://www.ncbi.nlm.nih.gov/pubmed/20214368
*
M. Douville, F. Gagné, C. Blaise, C. André (2007) Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment Ecotoxicology and Environmental Safety Volume 66, Issue 2, February , Pages 195–203 http://www.sciencedirect.com/science/article/pii/S0147651306000182
*
Brian Dowd-Uribe (2014) Engineering yields and inequality? How institutions and agro-ecology shape Bt cotton outcomes in Burkina Faso. Geoforum Volume 53, May 2014, Pages 161–171. http://www.sciencedirect.com/science/article/pii/S0016718513000456
*
Ebenezer, K. S., Nachimuthu, R., Thiagarajan, P., & Velu, R. K. (2013). In silico identification of cross affinity towards Cry1Ac pesticidal protein with receptor enzyme in Bos taurus and sequence, structure analysis of crystal proteins for stability. Bioinformation, 9(15), 792. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766313/
*
Jonathan Ewbank (1999) Biotech companies must get back to basics to weigh up risks Nature 401, 207 (16 September 1999) | doi:10.1038/45652 http://www.nature.com/nature/journal/v401/n6750/full/401207a0.html
*
Faria CA, Wäckers FL, Pritchard J, Barrett DA and Turlings TCJ (2007) High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. PLoS ONE 2(7):e600 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899225/
*
Ferrini AM, Mannoni V, Pontieri E, Pourshaban M. (2007) Longer resistance of some DNA traits from BT176 maize to gastric juice from gastrointestinal affected patients. Int J Immunopathol Pharmacol. Jan-Mar;20(1):111-8
http://www.ncbi.nlm.nih.gov/pubmed/17346434
*
Klara Fischer, Johnnie van den Berg, Charles Mutengwa (2015) Is Bt maize effective in improving South African smallholder agriculture? South African Journal of Science Volume 111 | Number 1/2 January/February 2015 http://www.sajs.co.za/sites/default/files/publications/pdf/Fischer_Commentary.pdf
*
Fischer, K., & Hajdu, F. (2015). Does raising maize yields lead to poverty reduction? A case study of the Massive Food Production Programme in South Africa. Land Use Policy, 46, 304-313. http://www.sciencedirect.com/science/article/pii/S0264837715000885
*
Mingxia Gao, Bin Li, Wenzhen Yuan, Lihui Zhao and Xuehong Zhang (2014) Hypothetical Link Between Infertility and Genetically Modified Food. Recent Patents on Food, Nutrition & Agriculture, 2014, 6, 16-22 http://www.eurekaselect.com/125582/article
*
Gould FL, Tabashnik B. 1998. Bt-cotton resistance management. In: Mellon M, Rissler J, eds. Now or Never: Serious New Plans to Save a Natural Pest Control 65-105.
*
Gould F, Blair N, Reid M, Rennie TL, Lopez J, Micinski S. (2002) Bacillus thuringiensis-toxin resistance management: stable isotope assessment of alternate host use by Helicoverpazea. Proc Natl Acad Sci U S A. Dec 24;99(26):16581-6. http://www.ncbi.nlm.nih.gov/pubmed/12464681
*
Guimaraes V, Drumare MF, Lereclus D, Gohar M, Lamourette P, Nevers MC, Vaisanen-Tunkelrott ML, Bernard H, Guillon B, Créminon C, Wal JM, Adel-Patient K. (2010) In vitro digestion of Cry1Ab proteins and analysis of the impact on their immunoreactivity. J Agric Food Chem. 58(5):3222-3231
*
Harwood, J.D. , W. Wallin, & J.J. Obrycki. (2005). Uptake of Bt-endotoxins by non-target herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Molec. Ecology 14: 2815-2823. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2005.02611.x/abstract
*
Harwood JD, Samson RA, Obrycki JJ. (2007) Temporal detection of Cry1Ab-endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bull Entomol Res. 2007 Dec;97(6):643-8. http://www.ncbi.nlm.nih.gov/pubmed/17997879
*
Hilbeck A.& Schmidt J.E.U. (2006) Another view on Bt proteins how specific are they and what else might they do? Biopesticides International. 2:1-50.
*
F. Hofmann, R. Epp, L. Kruse, A. Kalchschmied, B. Maisch, E. Müller, U. Kuhn, W. Kratz, S. Ober, J. Radtke, U. Schlechtriemen, G. Schmidt, W. Schröder, W. v.d. Ohe, R. Vögel, N. Wedl, W. Wosniok (2010) Monitoring of Bt-Maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008 Umweltwissenschaften und Schadstoff-ForschungJune 2010, Volume 22, Issue 3, pp 229-251 http://link.springer.com/article/10.1007/s12302-010-0133-6
*
Kim, Y. H., Hwang, C. E., Kim, T. S., Lee, J. H., & Lee, S. H. (2012). Assessment of potential impacts due to unintentionally released Bt maize plants on non-target aphid Rhopalosiphum padi (Hemiptera: Aphididae). Journal of Asia-Pacific Entomology, 15(3), 443-446. http://www.sciencedirect.com/science/article/pii/S1226861512000167
*
Jacobson, Klara (2013). From Betterment to Bt maize. Acta Universitatis agriculturae Sueciae, 1652-6880; :28 http://pub.epsilon.slu.se/10406/
*
Jonathan Knight (2003) Agency ‘ignoring its advisers’ over Bt maize Nature 422, 5 (6 March) http://www.nature.com/nature/journal/v422/n6927/full/422005a.html
*
Köhler, H. R. & Triebskorn, R. (2013) Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? Science 341, 759–765 http://www.entomology.umn.edu/cues/pollinators/pdf-pesticides/2013%20Kohler%20and%20Triebskorn%20Science.pdf
*
Kranthi KR, S. Naidu, C.S. Dhawad, A.Tatwawadi, K.Mate, E. Patil, A.A. Bharose, G.T. Behere, R.M.Wadaskar and S. Kranthi (2005) Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpaarmigera (Hübner)(Noctuidae:Lepidoptera), CurrentScience, Vol. 89(2). http://www.docstoc.com/docs/43821474/Temporal-and-intra-plant-variability-of-Cry1Ac-expression-in-Bt—PDF
*
Kranthi KR (2010) Bt cotton-A critical appraisal, Annexure to Bt brinjal decision note, Ministry of Environment and Forests, page180-190, http://moef.nic.in/downloads/public-information/Annex_BT.pdf
*
Kruger M, Van Rensburg JBJ and Vanden Berg J (2009) Perspective on the development of stemborer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Protection 28(8): 684-9 http://www.sciencedirect.com/science/article/pii/S0261219409000921
*
Kruger, M., Van Rensburg, J. B. J. and Van den Berg, J. (2012), Transgenic Bt maize: farmers’ perceptions, refuge compliance and reports of stem borer resistance in South Africa. Journal of Applied Entomology http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.2011.01616.x/abstract
*
Lang A, Brunzel S, Dolek M, Otto M, Theißen B (2011) Modelling in the light of uncertainty of key parameters: a call to exercise caution in field predictions of Bt-maize effects. Proc R Soc B 278:980–981 http://rspb.royalsocietypublishing.org/content/278/1708/980
*
Letourneau DK, Robinson GS, Hagen JA. (2003) Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores. Environ Biosafety Res. 2003 Oct-Dec;2(4):219-46. http://www.ncbi.nlm.nih.gov/pubmed/15612280
*
Letourneau, D.K., & Hagen, J.A. (2012) Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt- Crops. Journal of Botany. Article ID 389247 http://www.hindawi.com/journals/jb/2012/389247/
*
Yong-Biao Liu, Bruce E. Tabashnik, Timothy J. Dennehy, Amanda L. Patin & Alan C. Bartlett (1999) Development time and resistance to Bt crops Nature 400, 519 5 August http://www.nature.com/nature/journal/v400/n6744/abs/400519a0.html
*
B L Ma, K D Subedi (2005) Development, yield, grain moisture and nitrogen uptake of Bt corn hybrids and their conventional near-isolines Field Crops Research Volume: 93, Issue: 2-3, Pages: 199-211 http://www.sciencedirect.com/science/article/pii/S0378429004002564
*
Mascarenhas R.N., Boethel D.J., Leonard B.R., Boyd M.L., Clemens C.G. (1998), Resistance monitoring to Bacillus thuringiensis insecticides for soybean loopers (Lepidoptera: Noctuidae) collected from soybean and transgenic Bt-cotton, “Journal of Economic Entomology”, 91, pp. 1044-1050 http://www.ingentaconnect.com/content/esa/jee/1998/00000091/00000005/art00006
*
Mason P, Braun L, Warwick SI, Zhu B, Stewart CN Jr. (2003) Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Environ Biosafety Res. Oct-Dec;2(4):263-76. http://www.ncbi.nlm.nih.gov/pubmed/15612282
*
Mc Gaughey WH and Whalon ME (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451-1455. http://www.sciencemag.org/content/258/5087/1451.abstract
*
Men X, Ge F, Edwards C.A. and Yardim E.N. (2005) The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Protection 24 (4):319324.
*
Bélin Poletto Mezzomo, Ana Luisa Miranda-Vilela, Ingrid de Souza Freire, Lilian Carla Pereira Barbosa, Flávia Arruda Portilho, Zulmira Guerrero Marques Lacava and Cesar Koppe Grisolia (2013) Hematotoxicity of Bacillus thuringiensis as Spore-crystal Strains Cry1Aa, Cry1Ab, Cry1Ac or Cry2Aa in Swiss Albino Mice J Hematol Thromb Dis, 1:1 http://esciencecentral.org/journals/JHTD/JHTD-1-104.pdf
*
Mezzomo, B. P., Miranda-Vilela, A. L., Barbosa, L. C. P., Albernaz, V. L. and Grisolia, C. K. (2015), Hematotoxicity and genotoxicity evaluations in Swiss mice intraperitoneally exposed to Bacillus thuringiensis (var kurstaki) spore crystals genetically modified to express individually Cry1Aa, Cry1Ab, Cry1Ac, or Cry2Aa. Environ. Toxicol.. doi: 10.1002/tox.22106 http://onlinelibrary.wiley.com/doi/10.1002/tox.22106/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false
*
Paul, V., Guertler, P., Wiedemann, S., & Meyer, H. H. (2010). Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic research, 19(4), 683-689. http://link.springer.com/article/10.1007/s11248-009-9339-z#page-1
*
Pemsl, D., H. Waibel, and A.O. Gutierrez. (2005) Why do some Bt-cotton farmers in China continue to use high levels of pesticides? Int. J. Sustain. 3:44-56 http://www.mendeley.com/catalog/some-bt-cotton-farmers-china-continue-high-levels-pesticides/#
*
Fabiana Piccioni, Donatella Capitani, Lello Zolla, Luisa Mannina (2009) NMR metabolic profiling of transgenic maize with the Cry1Ab gene.
Journal of Agricultural and Food Chemistry Volume: 57, Issue: 14, Publisher: AMER CHEMICAL SOC, Pages: 6041-6049 http://www.mendeley.com/catalog/nmr-metabolic-profiling-transgenic-maize-cry1ab-gene/
*
Prager, S.M., Martini, X., Guvvala, H., Nansen, C. and Lundgren, J. (2014), Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn. Annals of Applied Biology. http://onlinelibrary.wiley.com/doi/10.1111/aab.12120/abstract
*
Qayum, A., and K. Sakkhari 2005. Bt cotton in Andhra Pradesh: A three-year assessment. Deccan Dev. Society. http://www.mendeley.com/catalog/bt-cotton-andhra-pradesh-three-year-assessment-first-ever-sustained-independent-scientific-study-bt/
*
Ranjith MT, Prabhuraj A and Srinivasa YB (2010) Survival and reproduction of natural populations of Helicoverpa armigeraon Bt-cotton hybrids in Raichur, India. Current Science, Vol.99(11).
*
Rawat Preeti ,Amarjeet Kumar, Krishna Ray, Bhupendra Chaudhary, Sanjeev Kumar,Taru Gautam, Shaveta Kanoria, Gurpreet Kaur, Paritosh Kumar, Deepak Pental & Pradeep Kumar Burma (2011): Detrimental effect of expression of Bt endotoxin Cry1Ac on in vitro regeneration, in vivo growth and development of tobacco and cotton transgenics. Journal of Biosciences 36(2), June, 363376. http://www.ncbi.nlm.nih.gov/pubmed/21654089
*
Ahmed Rayan (2013) Safety and Quality Parameters of Genetically Modified Corn Transgenic Corn (Ajeeb YG). LAP LAMBERT Academic Publishing (2013-08-04 ) https://www.knigozal.com/store/ru/book/safety-and-quality-parameters-of-genetically-modified-corn/isbn/978-3-659-43314-6
*
Rosati A, Bogani P, Santarlasci A, Bulatti M (2008) Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol.67(3): 271-81. http://www.ncbi.nlm.nih.gov/pubmed/18306044
*
Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephen ML. (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci U S A. Oct 9;104(41):16204-8.http://www.ncbi.nlm.nih.gov/pubmed/17923672
*
Emma J. Rosi-Marshall, Jennifer L. Tank, Todd V. Royer, and Matt R. Whiles (2008) Reply to Beachy et al. and Parrott: Study indicates Bt corn may affect caddisflies PNAS February 19, vol. 105 no. 7 http://www.pnas.org/content/105/7/E11.full
*
Sarkar B, Patra AK and Purakayastha TJ (2008) Transgenic Bt-Cotton Affects Enzyme Activity and Nutrient Availability in a Sub-Tropical Inceptisol. J. Agronomy & Crop Science ISSN0931-2250 http://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2008.00312.x/abstract
*
Saxena, D. and Stotzky, G. (2000), Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiology Ecology, 33: 35–39. http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6941.2000.tb00724.x/abstract;jsessionid=E1ED48BEEFBB87E9D0CBF4F698CAC137.f03t01
*
Seetharam S (2010) Should the Bt brinjal controversy concern health care professionals and bio-ethicists?. Indian J Med Ethics. Jan-Mar 7(1)
http://www.ncbi.nlm.nih.gov/pubmed/20166287
*
Strain KE, Lydy MJ (2015) The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms. Chemosphere. 2015 Mar 27;132:94-100 http://www.sciencedirect.com/science/article/pii/S0045653515002039
*
Swadener C. (1994) Bacillus thuringiensis, Insecticide Fact Sheet ,Journal of Pesticide reform, Fall,Vol14,No3.
http://eap.mcgill.ca/MagRack/JPR/JPR_22.htm
*
Madhura Swaminathan and Vikas Rawal (2011) Are there Benefits from the Cultivation of Bt cotton?. Review of Agrarian Studies Vol1(1)
*
A. Székács, J. Juracsek, L. A. Polgár and B. Darvas, (2005) Levels of expressed Cry1Ab toxin in genetically modified corn DK-440-BTY (YieldGard) and stubble FEBS J., vol. 272, Suppl 1, pp. 508.
*
András Székács , Eszter Takács , Judit Juracsek, Éva Lauber and Béla Darvas (2010) Determination of Cry1Ab toxin content of MON 810 maize pollen by enzyme-immunoassay Programme and Book of Abstracts of IX th European Congress of Entomology , p. 200;
http://www.bdarvas.hu/gmo/idn6011
*
A. Székács, É, Lauber, J. Juracsek and B. Darvas,(2010) Cry1Ab toxin production of MON 810 transgenic maize, Environ. Toxicol. Chem., vol. 29, pp. 182–190.
http://www.ncbi.nlm.nih.gov/pubmed/20821434
*
A. Székács, É. Lauber, E. Takács and B. Darvas, (2010) Detection of Cry1Ab toxin in the leaves of MON 810 transgenic maize, Anal. Bioanal. Chem., vol. 396, pp. 2203–2211. http://www.ncbi.nlm.nih.gov/pubmed/20091160
*
Székács A, Weiss G, Quist D, Takács E, Darvas B, Meier M, Swain T, Hilbeck A (2012) Inter-laboratory comparison of Cry1Ab toxin quantification in MON 810 maize by enzyme-immunoassay. Food Agric Immunol 23:99–121
http://www.tandfonline.com/doi/abs/10.1080/09540105.2011.604773#.UiDtLknD9lY
*
Székács, A., & Darvas, B. (2012). Environmental assessment of MON 810 maize in the Pannonian Biogeographical Region. Acta Phytopathologica et Entomologica Hungarica, 47(2), 307-319. http://www.akademiai.com/content/b872k87n07664526/
*
András Székács, Béla Darvas (2013) Comparative Aspects of Cry Toxin Usage in Insect Control Advanced Technologies for Managing Insect Pests, pp 195-230
http://link.springer.com/chapter/10.1007%2F978-94-007-4497-4_10
*
Eszter Takács , Éva Lauber, Hajnalka Bánáti, András Székács and Béla Darvas (2009) Bt -plants in plant protection Növényvédelem. 45 : 549 –558;
http://www.ecotox.hu/download/pdf/Btnoveny.pdf
*
Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffiths NA, Frauendorf TC, Treering DJ. (2010) Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proc Natl Acad Sci U S A. Oct 12;107(41):17645-50.http://www.ncbi.nlm.nih.gov/pubmed/20876106
*
Beatrix Tappeser (1997) The differences between conventional Bacillus thuringiensis strains and transgenic insect resistant plants Possible reasons for rapid resistance development and susceptibility of non-target organisms. Prepared for the third meeting of the Open-ended Working Group on Biosafety, Okt 13-17, 1997, Montreal,Canada http://online.sfsu.edu/rone/GEessays/GEPlantsBTResistance.htm
*
Christoph Then (2010) Risk assessment of toxins derived from Bacillus thuringiensis—synergism, efficacy, and selectivity Environ Sci Pollut Res Int. Mar; 17(3): 791–797. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822905/
*
Trabalza-Marinucci, Massimo, Giorgio Brandi, Cristina Rondini, Luca Avellini, Camilla Giammarini, Silva Costarelli, Gabriele Acuti et al. (2008) “A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep.” Livestock Science 113, no. 2 (2008): 178-190. http://www.sciencedirect.com/science/article/pii/S1871141307002442
*
Vacher C, Weis AE, Hermann D, Kossler T, Young C and Hochbert ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape(Brassica rapa). Theor Appl Genet 109(4): 806-14.
http://link.springer.com/article/10.1007/s00122-004-1696-7
*
Viktorov, A. G. (2007) Bt-plants and the biological activity of soils. Agrokhimiya (2): 83-88 https://eurekamag.com/research/013/231/013231876.php
*
AG Victorov (2011) Transfer “secondary products” Bt-CORN and Freshwater Ecosystems. Journal of the Russian Academy of Sciences, “Plant Physiology” T.58, № 4, g.2011, S.483-489 http://77.50.239.203/index.php?page=Posts.ViewPost&id=452&PHPSESSID=m4dp8cvic8hqdikoe654lhl1k3
*
A. G. Viktorov (2015) Can efficient insecticidal plants be created or the evolution of phytophage resistance to commercial transgenic Bt-plants. Russian Journal of Plant Physiology. January 2015, Volume 62, Issue 1, pp 14-22 http://link.springer.com/article/10.1134%2FS102144371501015X
*
Wang Y, Wei B, Tian Y, Wang Z, Tian Y, et al. (2013) Evaluation of the Potential Effect of Transgenic Rice Expressing Cry1Ab on the Hematology and Enzyme Activity in Organs of Female Swiss Rats. PLoS ONE 8(11): e80424. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0080424#pone-0080424-g008
*
Wei-Xiang Wu (2004) Effect of straws from Bt transgenic rice on selected biological activities in water-flooded soil. European Jounral of Soil Biology 40(1):15-22. http://www.sciencedirect.com/science/article/pii/S1164556304000044
*
Wickson, F. & Wynne, B. (2012) “Ethics of Science for Policy in the Environmental Governance of Biotechnology: MON810 Maize in Europe” Ethics, Policy and Environment 15(3): 321-340.http://www.tandfonline.com/doi/abs/10.1080/21550085.2012.730245?journalCode=cepe21#.UiDrY0nD9lY
*
Wu K, Guo Y, Gao S. (2002) Evaluation of the natural refuge function for Helicoverpa arnigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis transgenic cotton growing areas in north China. J Econ Entomol. Aug;95(4):832-7. http://www.ncbi.nlm.nih.gov/pubmed/12216828
*
Wu, W-X., Ye, Q-F. & Min, H. 2004. Effect of straws from Bt-transgenic rice on selected biological activities in waterflooded soil. European Journal of Soil Biology 40: 15-22. http://www.sciencedirect.com/science/article/pii/S1164556304000044
*
Xue K, Deng S, Wang R, Yan F, Xu C. (2008) Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: a case study on non-target effects. Sci China C Life Sci. 2008 Feb;51(2):145-56. http://www.ncbi.nlm.nih.gov/pubmed/18239893
*
Dehua Chen Guoyou Ye, Changqin Yang, Yuan Chen, Yunkang Wu (2004) Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research, Volume 87, Issues 2–3, 10 May, Pages 235–244. http://www.sciencedirect.com/science/article/pii/S0378429003002429
*
Zhou J, Xiao K, Wei B, Wang Z, Tian Y, et al. (2014) Bioaccumulation of Cry1Ab Protein from an Herbivore Reduces Anti-Oxidant Enzyme Activities in Two Spider Species. PLoS ONE 9(1): e84724. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0084724
*
Zhu, B., Lawrence, J. R., Warwick, S. I., Mason, P., Braun, L., Halfhill, M.D. and Stewart, C. N. (2004), Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Molecular Ecology, 13: 237–241. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-294X.2004.02018.x/abstract?
*
Zwahlen C, Hilbeck A, Gugerli P, Nentwig W. (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol. Mar;12(3):765-75. http://www.ncbi.nlm.nih.gov/pubmed/12675831